The Influence of Farming Types on Greenhouse Gases Emissions

Authors

  • Bazyli Czyżewski Bazylii Czyżewski, PhD (dr hab.), Associate Professor, Department of Education and Personnel Development, The Poznań University of Economics and Business, Poznań, Poland, b.czyzewski@ue.poznan.pl
  • Łukasz Kryszak Łukasz Kryszak, MA, Department of Macroeconomics and Agricultural Economics, The Poznań University of Economics and Business, Poznań, Poland, lukasz.kryszak@ue.poznan.pl

DOI:

https://doi.org/10.53098/wir012017/05

Keywords:

air pollution, types of agriculture, intensification, production factors compensation

Abstract

Problems related to the quality of natural environment are currently the major challenges facing the agricultural sector. The main issue is the air pollution associated with greenhouse gases but also with other pollutants. In terms of the impact of agriculture on the environment numerous studies have been conducted, however, they often fail to take into account economic determinants. The main goal of the article was to examine how the economic characteristics of different types of farming affect pollutants emissions. Characteristics both in micro- (remuneration of work force, expenditures related to the intensity of land management) and macro-scale (GDP per capita, average farm size, level of financial support to the agricultural sector) are taken into account. The hypothesis is that the productivity of factors and the characteristics describing the intensity of farming otherwise affect the emission of air pollutants according to the type of agriculture. The study covers the years 1995–2009 in 40 countries by using panel regression. It turns out that the type of agriculture in developed countries can effectively combine economic and environmental goals. In less developed countries growing labour and capital compensation still promote the increase of air pollutants emissions. In the middle-income countries there is a need for incentives to introduce energy-saving technologies.

References

Anderson K., Nelgen S. (2013). Updated National and Global Estimates of Distortions to Agricultural Incentives, 1955 to 2011. Washington DC: World Bank.

Cauwenbergh Van N., Biala K., Bielders C., Brouckaert V., Franchois L., Cidad V.G., […] Sauvenier X. (2007). SAFE – A hierarchical framework for assessing the sustainability of agricultural systems. Agriculture, Ecosystems & Environment, 120 (2), 229–242.

Czyżewski A., Stępień S. (2011). Wspólna polityka rolna UE po 2013 r. a interesy polskiego rolnictwa. Ekonomista, 1, 9–36.

EAA (2009). Technical raport 4, http://www.copacogeca.be/Download.ashx?ID=836589 [dostęp: 4.09.2016].

Eurostat (2016). Greenhouse Gas Emissions by Industries and Households. http://ec.europa.eu/eurostat/statistics-explained/index.php/Greenhouse_gas_emissions_by_industries_and_households#CO2.C2.A0equivalents [dostęp: 01.09.2016].

Galan M.B., Peschard D., Boizard H. (2007). ISO 14 001 at the farm level: Analysis of five methods for evaluating the environmental impact of agricultural practices. Journal of Environmental Management, 82 (3), 341–352.

Genty A., Arto I., Neuwahl F. (2012). Final Database of Environmental Satellite Accounts: Technical Report on Their Compilation. WIOD Documentation.

German R.N., Thompson C.E., Benton T.G. (2016). Relationships among multiple aspects of agriculture’s environmental impact and productivity: A meta‐analysis to guide sustainable agriculture. Biological Reviews, 92 (2), 716–738.

Gouma R., Timmer M., de Vries G. (2014). Employment and Compensation in the WIOD Socio-Economic Accounts (SEA): Revision for 2008–2009 and new data for 2010/2011, http://www.wiod.org/protected3/data13/update_sep12/SEA%20Sources_June2014.pdf [dostęp: 01.09.2016].

Hamuda H.E.A.F.B., Patkó I. (2010). Relationship between environmental impacts and modern agriculture. Óbuda University e-Bulletin, 1, 87–98.

Henault C., Devis X., Page S., Justes E., Reau R., Germon J.C. (1998). Nitrous oxide emissions from different soil and land management conditions. Biology and Fertility of Soils, 26 (3), 199–207.

IFA (2009). Climate Change and Enhancing Agricultural Productivity and Sustainability. International Fertilizer Industry Association, Paris, 3–10.

Kaiser E.A., Kohrs K., Kucke M., Schnug E., Heinemeyer O., Munch J.C. (1998). Nitrous oxide release from arable soil: Importance of N-fertilisation, crops and temporal variation. Soil Biology and Biochemistry, 30 (12), 1553–1563.

Leontief W. (1966). Input-output Economics. New York: Oxford University Press.

Lesschen J.P., Velthof G.L., de Vries W., Kros J. (2011). Differentiation of nitrous oxide emission factors for agricultural soils. Environmental Pollution, 159, 3215–3222.

Lowder S.K., Skoet J., Singh S. (2014). What do we Really Know about the Number and Distribution of Farms and Family Farms in the World? Background paper for the State of Food and Agriculture, 8. Rome FAO, Agricultural Development Economics Div.

Lubowski R.N., Bucholtz S., Claassen R., Roberts M.J., Cooper J.C., Gueorguieva A., Johansson R. (2006). Environmental effects of agricultural land-use change. Economic Research Report, 25, 1–75.

OECD (2001). Environmental Indicators for Agriculture: Methods and Results. Organisation for Economic Co-operation and Development.

Parton W.J., Del Grosso S.J., Marx E., Swan A.L. (2011). Agriculture’s role in cutting greenhouse gas emissions. Issues in Science and Technology, 27 (4).

Payraudeau S., van der Werf H.M. (2005). Environmental impact assessment for a farming region: A review of methods. Agriculture, Ecosystems & Environment, 107 (1), 1–19.

Sabiha N.E., Salim R., Rahman S., Rola-Rubzen M.F. (2015). Measuring environmental sustainability in agriculture: A composite environmental impact index approach. Journal of Environmental Management, 166, 84–93.

Stoate C., Báldi A., Beja P., Boatman N.D., Herzon I., Van Doorn A., […] Ramwell C. (2009). Ecological impacts of early 21st century agricultural change in Europe – a review. Journal of Environmental Management, 91 (1), 22–46.

Stolze M., Piorr A., Häring A.M., Dabbert S. (2000). Environmental Impacts of Organic Farming in Europe. Stuttgart-Hohenheim: Universität Hohenheim (seria: Organic farming in Europe: Economics and Policy, t. 6).

Tilman D., Balzer C., Hill J., Befort B.L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108 (50), 20260–20264.

Timmer M.P., Dietzenbacher E., Los B., Stehrer R., Vries G.J. (2015). An illustrated user guide to the world input–output database: The case of global automotive production. Review of International Economics, 23 (3), 575–605.

Torrellas M., Antón A., Montero J.I. (2013). An environmental impact calculator for greenhouse production systems. Journal of Environmental Management, 118, 186–195.

Troccoli A., Maddaluno C., Mucci M., Russo M., Rinaldi M. (2015). Is it appropriate to support the farmers for adopting conservation agriculture? Economic and environmental impact assessment. Italian Journal of Agronomy, 10 (4), 169–177.

Walls M. (2006). Agriculture and Environment. SCAR Foresight Group.

Werf Van der H.M., Petit J. (2002). Evaluation of the environmental impact of agriculture at the farm level: A comparison and analysis of 12 indicator-based methods. Agriculture, Ecosystems & Environment, 93 (1), 131–145.

Wirén-Lehr S. von (2001). Sustainability in agriculture – an evaluation of principal goal-oriented concepts to close the gap between theory and practice. Agriculture, Ecosystems & Environment, 84 (2), 115–129.

Wrzaszcz W. (2013). Zrównoważenie indywidualnych gospodarstw rolnych w Polsce objętych FADN. Zagadnienia Ekonomiki Rolnej, 334 (1), 73–90.

Zieliński M. (2014). Emisja gazów cieplarnianych a efektywność funkcjonowania polskich gospodarstw specjalizujących się w produkcji roślinnej. Zeszyty Naukowe SGGW w Warszawie. Problemy Rolnictwa Światowego, 14 (3), 226–235.

Article file downloads

153

Pages

99-122

How to Cite

Czyżewski, B. and Kryszak, Łukasz (2017) “The Influence of Farming Types on Greenhouse Gases Emissions”, Wieś i Rolnictwo. Warszawa, PL, (1 (174), pp. 99–122. doi: 10.53098/wir012017/05.