Determinanty nożyc cen w rolnictwie krajów Unii Europejskiej o zróżnicowanej strukturze agrarnej

Autor

  • Bazyli Czyżewski prof. dr hab. Bazyli Czyżewski, Katedra Edukacji i Rozwoju Kadr, Katedra Makroekonomii i Gospodarki Żywnościowej, Uniwersytet Ekonomiczny w Poznaniu, ul. Powstańców Wlkp. 16, 60-101 Poznań, Polska, b.czyzewski@ue.poznan.pl
  • Anna Matuszczak dr hab. Anna Matuszczak, Katedra Makroekonomii i Gospodarki Żywnościowej, Uniwersytet Ekonomiczny w Poznaniu, al. Niepodległości 10, 61-875 Poznań, Polska, anna.matuszczak@ue.poznan.pl

DOI:

https://doi.org/10.53098/wir032016/01

Słowa kluczowe:

ceny rolne, luka cenowa, nożyce cen, struktura agrarna

Abstrakt

Wskaźnik produkcji rolnej (agricultural goods output) obejmuje ważone zmiany cen surowców rolnych, podczas gdy wskaźnik zużycia pośredniego opisuje ceny nakładów, takie jak: nasiona, sadzonki, energia, nawozy, polepszacze gleby, środki ochrony roślin lub pasz. Stosunek tych dwóch wskaźników jest definiowany jako „luka cenowa” lub „nożyce cen”. W literaturze przedmiotu istnieje wiele modeli wyjaśniania cen produktów rolnych. Jednak kwestia determinant luki cenowej jest rzadko badana. Z tego powodu autorzy postawili sobie za cel oszacowanie długoterminowych modeli regresji luki cenowej w rolnictwie dla wybranych krajów europejskich, które reprezentują różne struktury agrarne. Powadzona analiza zakłada kilka etapów. W pierwszym z nich długoterminowe indeksy cenowe (od 1980 do 2014 roku) zostały obliczone na podstawie danych Eurostatu i FAOSTAT dla wszystkich dostępnych produktów rolnych i nakładów w krajach UE-27. Następnie zagregowane indeksy ważono wielkością produkcji lub konsumpcji pośredniej na podstawie średnich wskaźników cen dla poszczególnych nakładów lub efektów. W drugim etapie przeprowadzono analizę skupień opartą na wykorzystaniu czynnika ziemi przez poszczególne gospodarstwa rolne w krajach UE-27. W trzecim etapie wybrano do badań po trzy kraje reprezentujące najbardziej skrajne z wyróżnionych klastrów (z rolnictwem rozdrobnionym oraz wysokowydajnym, silnym ekonomicznie) i oszacowano dla ich rolnictwa modele ekonometryczne luki cenowej, gdzie indeksy efektów i nakładów są zmiennymi niezależnymi. Interesująca jest obserwacja, że marginalne efekty są znacznie silniejsze w modelach dla krajów, gdzie mamy do czynienia z rolnictwem intensywnym i na dużą skalę (jak we Francji, Wielkiej Brytanii i Danii), aniżeli w krajach o rozdrobnionej strukturze agrarnej, takich jak Grecja, Portugalia i Irlandia.

Bibliografia

Adalto A.A. Jr, Marcelo S.B., Adalto B.G. (2014). Forecasting Agricultural Commodities Spot Prices: A Jointly Approach. WORKING PAPER 25/04/2014. Instituto de Ensino e Pesquisa.

Ashutosh K.T. (2013). Agricultural price policy, output, and farm profitability – examining linkages during post-reform period in India. Asian Journal of Agriculture and Development, 10 (1), 91–111.

Bollerslev T.A. (1987). Conditionally heteroskedastic time-series model for speculative prices and rates of return. The Review of Economics and Statistics, 69, 542–547.

Bucharest University of Economic Studies. (2015). Faculty of Economics, Romanian Economists General Association, Romanian Association of Economic Faculties, Theoretical and Applied Economics, Volume XXII, Bucharest, Special Issue, http://store.ectap.ro/suplimente/Post-crisis-developments-in-Economics-nov-2014.pdf [dostęp: 11.03.2016].

Co H.C., Boosarawongse R. (2007). Forecasting agricultural exports and imports in South Africa. Applied Economics, 39 (16), 2069–2084.

Cochrane W.W. (1958). Farm Prices: Myth and Reality. Minneapolis: University of Minnesota Press.

COM. (2010). Communication From The Commission To The European Parliament. The Council, The European Economic And Social Committee and The Committee of The Regions. The CAP towards 2020: Meeting The Food, Natural Resources And Territorial Challenges of The Future. COM/2010/0672.

Czyżewski B., Nicula Alexandra, Nicula Amalia (2016). Drivers for the agricultural price gap in the different agrarian structures of the EU. Progress in Economic Sciences, 3, 14–28.

Enke D., Thawornwong S. (2005). The use of data mining and neural networks for forecasting stock market returns. Expert Systems with Applications, 29, 927–940.

Eurostat statistics explained. (2015). Agricultural output, price indices and income, http://ec.europa.eu/eurostat/statistics-explained/index.php/Agricultural_output,_price_indices_and_income#Price_indices [dostęp: 11.03.2016].

Eurostat statistics explained. (2016). Agricultural products, http://ec.europa.eu/eurostat/statistics-explained/index.php/Agricultural_products [dostęp: 11.03.2016].

Eurostat. (2013), http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Glossary:-ESU [dostęp:16.07.2013].

Everitt B.S., Landau S., Leese M., Stahl D. (2011). Cluster Analysis (wyd. 5). Chichester, West Sussex, UK: Wiley Online Library.

Fischer P. (2006). Rent-seeking, Institutions and Reforms in Africa: Theory and Empirical Evidence for Tanzania. New York: Springer.

Food and Agriculture Organization of the United Nations. (1988). Manual on agricultural price index numbers, Economic and Social development paper, 74, Rome, http://www.fao.org/fileadmin/templates/ess/ess_test_folder/World_Census_Agriculture/Publications/FAO_ESDP/ESDP_74_Manual_on_agricultural_price_index_numbers.pdf [dostęp: 11.03.2016].

Gatnar E., Walesiak M. (red.) (2004). Metody statystycznej analizy wielowymiarowej w badaniach marketingowych. Wrocław: Wydawnictwo Akademii Ekonomicznej im. Oskara Langego.

Kusz D. (2012). Egzogeniczne i endogeniczne uwarunkowania procesu modernizacji rolnictwa. Roczniki Ekonomii Rolnictwa i Rozwoju Obszarów Wiejskich, 99 (2), 53–67.

Labys W.C. (2006). Modeling and Forecasting Primary Commodity Prices. Burlington: Routledge.

Levins R.A., Cochrane W.W. (1996). The Treadmill revisited. Land Economics, 72, 550–553.

Malpezzi S. (2003). Hedonic pricing models: A selective and applied review. W: O’Sullivan T., Gibb K. (red.). Housing Economics and Public Policy: Essays in honor of Duncan Maclennan (s. 130–134). Oxford: Blackwell.

Matuszczak A. (2013). Zróżnicowanie rozwoju rolnictwa w regionach unii europejskiej w aspekcie jego zrównoważenia. Warszawa: Wydawnictwo Naukowe PWN.

Mellor J.W., Raisuddin A. (1989). Agricultural Price Policy for Developing Countries. London: The International Food Policy Research Institute.

Moss C.B. (1992). The cost price squeeze in agriculture: An application of cointegration. Review of Agricultural Economics, 14 (1), 209–217.

Moss C.B., Shonkwiler J.S., Ford S.A. (1990). A risk endogenous model of aggregate agricultural debt. Agricultural Finance Review, 50, 73–79.

Octavio A.R., Mohamadou F. (2003). Forecasting agricultural commodity prices with asymmetric-error GARCH models. Journal of Agricultural and Resource Economics, 28 (1), 1–85.

OECD. (2000). A Matrix Approach to Evaluating Policy: Preliminary Findings from PEM Pilot Studies of Crop Policy In the EU, the US, Canada and Mexico. OECD Directorate for Food, Agriculture and Fisheries Trade Directorate, Paris.

Poczta W., Mrówczyńska A. (2002). Regionalne zróżnicowanie polskiego rolnictwa. W: Poczta W., Wysocki F. (red.). Zróżnicowanie regionalne gospodarki żywnościowej w Polsce w procesie integracji z Unią Europejską (s. 128–136). Poznań: Wydawnictwo AR im. Augusta Cieszkowskiego.

Poczta-Wajda A. (2013). The Role of Olson’s Interest Groups Theory in Explaining the Different Level of Agricultural Support in Countries with Different Development Level. Production and Cooperation in Agriculture Finance and Taxes; no. 30, Jelgava: Ministry of Rural. Development and Food.

Poczta-Wajda A. (2015). Why “rich” farmers demand financial support. Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu, 17 (4), 237–242.

Saab M. (2011). Define agricultural price policy and what are the objectives of agricultural price policy, Study Points, Easy notes and assignments, http://studypoints.blogspot.ro/2011/07/define-agricultural-price-policy-and_8377.html [dostęp: 11.03.2016].

Shahwan T., Odening M. (2007). Forecasting agricultural commodity prices using hybrid neural networks. W: Chen S.-H., Wang P.P., Kuo T.-W. (red.). Computational Intelligence in Econmics and Finance, t. 2 (s. 223–226). Berlin Heidelberg, Germany: Springer-Verlag.

Swinnen J. (2008). The Political Economy of Agricultural Distortions: The Literature to Date. Paper for the IATRC Meeting, Scotsdale.

Ticlavilca A.M., Feuz D.M., McKee M. (2010). Forecasting Agricultural Commodity Prices Using Multivariate Bayesian Machine Learning Regression. St. Louis, Missouri.

Urząd Publikacji Unii Europejskiej (2002). Office for Official Publications of the European Communities. Handbook for EU Agricultural Price Statistics. Luxembourg.

Wang K.L., Fawson C., Barrett C.B., McDonald J.B. (2002). A flexible parametric GARCH model with an application to exchange rates. Journal of Applied Econometrics, 16, 521–536.

Wieliczko B. (2013). Wspólna polityka rolna w latach 2014–2020 – odpowiedź na niesprawność rynku czy wyraz niesprawności państwa. Roczniki Naukowe Ekonomii, Rolnictwa i Rozwoju Obszarów Wiejskich, 3 (100).

Wiking Educational Publishers. (2013). http://www.wiking.edu.pl/article.php?id=272 [dostęp: 15.01.2013].

World Bank Group. (2015). Global Economic Prospects. Having Fiscal Space and Using It. Washington, DC. https://www.worldbank.org/content/dam/Worldbank/GEP/GEP-2015a/pdfs/GEP15a_web_full.pdf [dostęp: 11.03.2016].

Yang S.-R., Brorsen B.W. (1992). Nonlinear dynamics of daily cash prices. American Journal of Agricultural Economics, 74 (3), 706–715.

Pobrania

Liczba pobrań artykułu

150

Strony

7-40

Jak cytować

Czyżewski, B. i Matuszczak, A. (2016) „Determinanty nożyc cen w rolnictwie krajów Unii Europejskiej o zróżnicowanej strukturze agrarnej”, Wieś i Rolnictwo. Warszawa, PL, (3 (172), s. 7–40. doi: 10.53098/wir032016/01.